
A Comparison Between Java Data Objects
(JDO), Serialization and JDBC for Java
Persistence

David Jordan
Object Identity, Inc.
www.objectidentity.com

Page 1

A Java application defines its data model in terms of a set
of interrelated classes. During the application's execution,
instances of these classes are instantiated and associated
with other instances. The data for these instances usually
needs to be stored so it can be shared and accessed by
other applications. Serialization and Java DataBase
Connectivity (JDBC) are the two existing standard
application program interfaces (APIs) for persisting data
in the Java community. After reviewing the capabilities
and fundamental differences of these two technologies,
we will examine a new standard for persisting data called
Java Data Objects (JDO). JDO provides many of the
benefits of serialization and JDBC without their
corresponding limitations.

Serialization provides direct support for storing instances
of an application's classes in a file but lacks important
facilities like transactions and queries. JDBC provides
Java applications with an interface to issue SQL
commands, usually to a relational database system
(RDBMS). JDBC does provide transactions and queries
but it lacks support for the application's object model.
Though serialization and JDBC both support the storage
of data, they are substantially different technologies. Each
presents developers with mixed offerings of advantages
and disadvantages for building robust, object-oriented
Java applications.

The Java Data Objects (JDO) industry standard provides
persistence for an application's object model in an
environment that supports transactions and queries. JDO
provides a binary compatible interface for storing Java
objects across a broad range of data management
implementations including relational databases, object
databases, flat files and mainframe connectivity and
transaction systems. JDO is aptly being characterized by
the phrase "write once, persist everywhere." JDO is set
to become the dominant standard for persisting Java data
due to its direct

support of the Java object model, robust offering of
transactions and queries and vast portability among data
management options.

Serialization
Serialization is a standard component of
every Java Virtual Machine (JVM), making
it free and ubiquitous in all Java

environments. It allows an object graph to be serialized into a
stream (specifically an ObjectOutputStream), which
can be associated with a file. An instance is serialized by
passing it as a parameter to the writeObject method of
ObjectOutputStream. The entire graph of objects
reachable from the instance is then serialized into the stream.
The object graph is reconstructed later by deserializing the
data from an ObjectInputStream.

Serialization is very easy to use and easily
stores the object models defined in the Java

language. A class to be serialized declares that it implements
Serializable or Externalizable. This allows the
Java runtime environment to perform default serialization of
the class without any other programming by the application.
If the default serialization provided by the JVM is
insufficient, the application can implement methods
writeObject and readObject to define the serialized
representation of an instance. If fields in a class should not be
stored, the application declares them as transient. The
application can also identify fields to be serialized
by including a static array field in the class
definition of type ObjectStreamField named
serialPersistentFields.

Serialization uses Java classes as its data
model. The relationships among classes
are represented by references and

collections of references. Entire object graphs are serialized
such that the relationships among reachable instances are
preserved in the serialized form of the object graph.

Java Data Objects (JDO) is a new industry standard data management interface for Java applications. JDO was
developed through the Java Community Process (JCP) under Java Specification Request (JSR) 12. Development of the JDO
specification, reference implementation, and compatibility test suite was led by Craig Russell of Sun Microsystems, Inc.
Contributors to the JDO specification included an industry expert group of representatives from companies providing
relational database, object database, and object-relational mapping products as well as vendor-neutral consultants expert in
persistent object technologies.

EEaassyy ttoo UUssee

UUsseess JJaavvaa ccllaasssseess
aass tthhee ddaattaa mmooddeell

SSttaannddaarrdd iinn
eevveerryy JJaavvaa
eennvviirroonnmmeenntt

Page 2

Serialization lacks many of the features
found in a robust database
environment. There is no support for
transactions. Without concurrency

control, nothing prevents multiple applications from
serializing to the same file and corrupting the data.
Serialization also lacks the ability to perform queries
against the data. The granularity of access is an entire
object graph making it impossible to access a single
instance or subset of the serialized data.

It is rare that a single serialization can
store all the data needed by an
application. Applications must
manage multiple serializations, either

in the same file or different files. Serialization lacks
support for identity and the coordinated management of
the instances in storage and memory. This means that
developers must take extreme care to avoid storing and
loading redundant instances. If different parts of a large
application read the same serialization more than once,
multiple copies of this instance will reside in memory.
Redundant copies would make coordinating separate
updates extremely difficult. These issues collectively result
in a lack of scalability needed by most applications.

JDBC
JDBC provides a standardized interface
for a Java application to issue SQL
statements to a relational database. By

leveraging the popularity of SQL and relational database
technology, JDBC has gained broad acceptance in the
market. SQL is the standard query language for relational

databases. The transactions and queries of SQL are
directly supported in JDBC.

JDBC uses SQL's relational data model as
its representation of data. This data model
consists of a set of tables that have rows

and columns. As an entity in the application domain is
mapped to a table, its attributes are mapped to the
columns of the table. A specific entity instance is
represented by a row in the table. To uniquely identify a
specific instance, the table uses a primary key that
consists of one or more columns of the table whose values
uniquely identify the instance. Relationships among
entities are represented by column(s) containing a foreign

key that matches a row's primary key. These relationships
are established in a SQL query by expressing join
conditions.

All operations used to manage persistent
data with JDBC are expressed relative to
the relational model of tables, rows and
columns. To add a row to a table, the
JDBC application issues a SQL INSERT

statement which provides values for the columns of the
table. A SQL UPDATE statement is used to modify a
row. The application must provide the values for the
primary key and the modified columns. A row is deleted
by issuing a SQL DELETE statement. A SQL SELECT
statement is issued to query the database. The WHERE
clause of SQL is used to express join conditions and other
query constraints. JDBC returns a ResultSet object,
which is used to iterate over the rows of the result, with
methods provided to extract individual column values.
The granularity of data passed between the Java
application and the SQL implementation is at the level of
a table cell for each of these operations.

Though there is commonality among
SQL implementations, there are many
different dialects of SQL. SQL code

written for one RDBMS will not always work with
another. So even though SQL is a standard, SQL queries
are rarely portable across products.

JDBC applications must work directly
with the SQL data model, because
JDBC does not support Java classes. An
application is forced to deal with two

very different data models: the Java object model and the
relational data model. Developers must decide whether
the stored entities of the application domain will be
represented as Java objects. Any book on object-oriented
design makes it very clear that the real advantages of
object-oriented development are only achieved by
representing your application domain entities as objects.

Sometimes developers choose not to represent their data
as objects. Without direct support for the mapping
between the object and relational data model, and with
tight schedule constraints, Java developers working
independently often develop JDBC code that is very
procedural in nature, making little use of objects.

LLaacckkss ffeeaattuurreess ooff
aa rroobbuusstt ddaattaabbaassee
eennvviirroonnmmeenntt

LLaacckkss ssccaallaabbiilliittyy
rreeqquuiirreedd bbyy mmoosstt
aapppplliiccaattiioonnss

PPrroovviiddeess
aacccceessss ttoo SSQQLL

UUsseess SSQQLL’’ss
rreellaattiioonnaall
ddaattaa mmooddeell

OOppeerraattiioonnss
aarree eexxpprreesssseedd
rreellaattiivvee ttoo
ttaabblleess,, rroowwss
aanndd ccoolluummnnss

RRaarreellyy ppoorrttaabbllee
aaccrroossss pprroodduuccttss

DDooeess nnoott
ssuuppppoorrtt JJaavvaa
ccllaasssseess

Consequently, their application code
attains very little reusability. The
developers must have a thorough
understanding of the relational schema

to interact with the data model. It is rare to have a
development staff that is proficient in Java and also
highly skilled in database and SQL development. This
can often result in applications getting written with
inefficient SQL expressions and an inability for
developers to attain most of the benefits of object-
oriented development.

Some applications manage data that
does not require the processing
capabilities of Java. SQL has very useful
features for dynamically associating

information and performing complex operations like
GROUP BY. Some applications can directly express the
necessary computations very succinctly in SQL. In these
circumstances there may not be any benefit to
representing the data in Java. Developers should do some
data analysis to determine whether their application fits
this situation.

Proprietary Object-
Relational Mapping
It may be decided that a Java object model should be
defined which corresponds to the data stored in the
relational database. Once the object model, relational
model and a mapping between them are defined, most of
the application developers are freed from the need to
understand the relational schema and can focus on the

Java object model. But a decision needs to be made as to
whether the development staff should build their own
object layer or buy an off-the-shelf object-relational
mapping (ORM) product.

Some organizations choose to
implement their own object mapping
layer. They justify this by reasoning
that they will have complete control

over all the software in their system and do not need to
incur additional software licensing costs. There are many
negative consequences with this approach. There are
significant costs and risks in developing such an object
mapping layer. First, it must be developed and tested
before the application objects can be defined. This can

Page 3

cause a substantial delay in completion of the application.
Second, a staff often does not have the expertise required
to properly develop an effective mapping layer. The result
ends up being deficient in functionality. The costs of
development, documentation, training and maintenance
of a home-grown object mapping layer becomes a
significant portion of the overall cost of engineering the
product.

Application development is quicker if a commercial
object-relational mapping product is purchased. Prior to
JDO, this meant committing to a proprietary API
supported by a single vendor. To minimize risks, a
lengthy evaluation process was performed to assure the
right choice was made.

Many existing mapping
products impose modeling
constraints on the Java
application. These include:

� Loss of encapsulation caused by the need to define
public getter and setter methods for each
persistent field

� Limited extensibility caused by lack of support for
inheritance

� Lack of support for polymorphic references
� Overdependence on a single vendor because of the

required use of vendor-specific class libraries

The lack of a standard API supported by multiple
providers makes the selection process difficult and risky.
Every application developed with JDBC has been forced

to make the decision whether to define an object model
and, if so, which proprietary object-relational mapping
product to use. The time necessary to make these
decisions can cause a substantial delay in application
implementation.

Java Data Objects
JDO is changing all this. JDO
allows developers to directly
persist Java object models into a
data store. It supports

transactions, queries and the management of an object
cache. Multiple vendors provide implementations for
relational databases, object databases, file stores and
mainframe connectivity environments. Applications

PPrroocceedduurraall
iinnsstteeaadd ooff
OObbjjeecctt OOrriieenntteedd

PPrroocceessssiinngg ddaattaa
tthhrroouugghh SSQQLL
iinnsstteeaadd ooff JJaavvaa

LLiimmiittaattiioonnss ooff pprroopprriieettaarryy
oobbjjeecctt--rreellaattiioonnaall mmaappppiinngg
AAPPIIss.. AAddooppttiinngg aa pprroopprriieettaarryy
AAPPII iiss rriisskkyy

JJDDOO:: ddaattaabbaassee
ffaacciilliittiieess ooff JJDDBBCC aanndd
JJaavvaa iinntteeggrraattiioonn ooff
SSeerriiaalliizzaattiioonn

SSiiggnniiffiiccaanntt rriisskkss
iinn hhoommee--ggrroowwnn
oobbjjeecctt--rreellaattiioonnaall
mmaappppiinngg

based on JDO will be binary compatible across all
implementations. For Java applications that want to
represent their persistent data in an object model, JDO
combines the database facilities found in JDBC with the
level of Java integration found in serialization. The
following figure illustrates where the three APIs are
positioned relative to their support for Java objects
models and database facilities.

Data Model
An application's Java classes serve as the
data model for JDO. All of Java's class
and field modifiers are supported. Fields
types, that can be used, include the

primitive types, wrapper classes, references, interfaces,
String, Date, BigDecimal and
BigInteger. JDO also supports the standard Java
collections defined in the java.util package. Relationships
among instances are represented using the Java
convention of a reference when the cardinality is one and
by a collection when the cardinality is greater than one.
Applications apply encapsulation by declaring data
members private and providing only the methods

necessary to represent the abstraction being modeled.
Applications can also use inheritance, polymorphism and
interfaces.

There are no JDO-specific types that must be used for
defining persistent classes. In fact, the persistent classes
do not need to import anything from JDO. In many
cases, existing Java classes in their compiled form can be
used in a JDO environment, allowing the application to
store instances of classes acquired from a third party.

Metadata
Though the data model is specified
via a set of Java classes, it is
necessary to provide the JDO
implementation with some
additional information related to

persistence, that is not directly expressible in Java. A
metadata file written in XML is used to specify additional
persistence-related information. At a minimum, it is
necessary to specify which classes are persistent. It is also
necessary to specify the element type of the collections
stored in the database and whether JDO should maintain
an extent for a class. An extent is the mechanism by
which an application can access all the instances of a
class.

Just like Serialization, fields declared
as transient are, by default, not stored
in the database. You can override the
default behavior in the metadata by

declaring that a transient field should be stored. Likewise,
you can also specify that a field which had not been
declared transient in Java should not be stored. Thus
JDO allows the persistence of a field in the database to be
different from how the field is handled when serialized.
You have complete control over which fields are stored.

Class enhancement
Adding JDO behavior to a
persistent class requires that it be
'enhanced.' The JDO specification
defines these required

enhancements to classes in detail. Enhancement adds two
data members and a set of methods to each persistent
class. It also alters field accesses to ensure the data is in
memory. Enhancing classes provides transparent access to
the objects in the database, so the state of objects can be
mapped between memory and the database.

Classes can be enhanced at the
source level by hand or by using a
tool, referred to as the primary key.
A more common approach,

however, is to use a tool which adds the necessary
enhancements directly to the .class files, such as the
Reference Enhancer developed by Sun Microsystems. A
JDO implementation may provide its own class

JJDDOO uusseess tthhee
JJaavvaa oobbjjeecctt
mmooddeell

JJDDOO mmeettaaddaattaa
ssppeecciiffiieess aaddddiittiioonnaall
ppeerrssiisstteennccee
iinnffoorrmmaattiioonn

SSuuppppoorrttss
ttrraannssiieenntt ffiieellddss iinn
ppeerrssiisstteenntt ccllaasssseess

AAddddiinngg JJDDOO ttoo
aa ccllaassss rreeqquuiirreess tthhaatt
iitt bbee eennhhaanncceedd

JDO
JDBC

Serialization

D
eg

re
e

o
f
D

at
ab

as
e

S
u
p
p
o
rt

Degree of Java support

Figure 1: API Support of Java and Database

Page 4

EEnnhhaanncceedd ccllaasssseess
wwoorrkk wwiitthh aannyy JJDDOO
iimmpplleemmeennttaattiioonn

Page 5

enhancer, but all implementations must support the
standard reference enhancement defined in the JDO
specification. A class enhanced by any vendor's enhancer
must work with any other JDO implementation.
Enhancement has been defined such that a single Java
class can even be used concurrently with multiple JDO
implementations in the same JVM.

The following figure illustrates the enhancement process.
A class file produced by a Java compiler and a JDO
metadata file specifying the additional persistence
information are used as input into an enhancer. The
enhancer produces a new class file with the enhancements
necessary for the class to be managed in a JDO
environment.

Figure 2: Class enhancement process

Identity
Each persistent instance has a unique
object identifier used to reference it in
a database. JDO defines different

forms of identity: datastore, application and nondurable
identity. The form of identity used for a class is specified
in the metadata. Nondurable identity is used when the
datastore does not have a means of uniquely identifying
and accessing an instance. A datastore identifier is a
unique identifier generated by the implementation that is
not dependent on the state of the object.

An application identifier does depend on the state in an
object, it is based on one or more fields in the class. In
the metadata for a persistent class you need to specify
which fields are part of the primary key. The application
must also define an application identity class that

contains fields with the same name and type as the fields
of the primary key. This application identity class is also
specified in the metadata.

Transactions
JDO's primary means for managing
persistent instances is the
PersistenceManager interface. A

PersistenceManager instance manages a cache of
objects associated with a transaction. Its method
currentTransaction returns an instance of the
Transaction interface which is used to begin,
commit and rollback a transaction. The Transaction
interface is used for all transaction management
operations.

All JDO implementations provide transactions that have
a pessimistic concurrency control policy. These
transactions acquire locks as objects are accessed. Support
of optimistic transactions is an optional JDO feature.
Optimistic transactions do not acquire locks and check
for concurrent update activity until a transaction is
committed. This reduces the resources necessary for
locking and provides performance advantages when
concurrent access to the same objects is rare.

JDO supports the Synchronization interface
specified in the Java Transaction API (JTA). The
application registers an object with the Transaction
instance that implements the Synchronization
interface. This allows the application to be notified when
the transaction is about to perform its commit phase and
also at the completion of commit processing, indicating
whether or not it succeeded with the transaction
interface.

Object Access
Instances of a persistent class are either
persistent or transient. An application
explicitly makes an instance persistent by
calling the PersistenceManager

method makePersistent. JDO also supports
persistence-by-reachability, which persists all instances
that are reachable via a reference contained in another
persistent instance. Persistence-by-reachability is
performed without any explicit calls by the application.

IInnssttaanncceess hhaavvee
uunniiqquuee iiddeennttiittyy

JJDDOO ssuuppppoorrttss
ttrraannssaaccttiioonnss

Javac

Enhancer
MyObject.class

Class File

MyObject.class
Enhanced class file

MyObject.jdo
XML metadata

MyObject.java
Source file

MMaakkiinngg
iinnssttaanncceess
ppeerrssiisstteenntt

Page 6

This provides transparent persistence of object graphs,
similar to serialization. However, JDO also allows the
instances to be accessed and managed at an object-level of
granularity.

An application does not need to make
explicit calls to access a related object. It
simply traverses a reference or iterates
through a collection and the JDO

runtime returns the objects from the database. The
application does not need to know whether or not the
objects have already been loaded into memory. JDO
brings the objects in memory on demand and ensures
that only a single copy of the object is in memory for the
transaction. Every attempt by the application to access a
particular persistent instance returns the same instance in
memory, regardless of how the instance is accessed. This
capability is provided by JDO's cache management
facilities. Developing with the JDO object cache is a
major paradigm shift in data access for applications.
Developers who have never worked with such an
environment get very excited when they discover this
capability. Once they become accustomed to using it,
they are reluctant to revert to previous approaches.

The application does not need to make
an explicit call to mark an instance as
updated. When a field in a persistent
instance is modified, a state variable

maintained by the PersistenceManager is
set to indicate that it has changed. The
PersistenceManager tracks all updates made
by the application, which includes making instances
persistent or deleting them. When the associated
transaction commits, all updates are propagated to the
database without requiring any programming by the
application.

The PersistenceManager method getExtent
is called to get an Extent, which is used to access all the
instances of a class. Methods named newQuery are used
to construct Query instances for performing queries
against the database. An instance can be accessed via its
identifier by calling the method getObjectById.
Instances are normally accessed by iterating an extent,
issuing a query, or simply navigating to related instances.

An application can create multiple
PersistenceManager instances to
support concurrent transactions in the

same JVM. Each PersistenceManager maintains
its own cache of persistent objects. The
PersistenceManager instances can be from the
same or different JDO implementations. An application
server environment typically maintains a pool of
PersistenceManager instances.

JDO has been defined to use the Java
Connector API (JCA) when used in a
managed environment so that JDO
implementations and applications can

easily integrate into an application server environment.
The JDO specification also details the conventions for
using JDO as the persistence mechanism in Enterprise
Java Beans (EJB) environments.

Query Support
Queries in JDO applications are
expressed using the Java Data
Objects Query Language (JDOQL).
JDOQL's syntax and expressions are
based largely on Java. The goal of

JDOQL is to provide a uniform query syntax that is
independent of underlying datastore query languages.
JDOQL has been defined so that its queries can be
optimized to specific underlying query languages, in
particular SQL. An implementation of JDO layered on
top of JDBC would need to translate JDOQL queries
into the underlying SQL used by the RDBMS. The
JDOQL language and syntax is consistent across all JDO

implementations making JDOQL queries portable across
all implementations. This insulates the application from
portability problems such as those caused by the different
SQL dialects found among RDBMSs.

In JDOQL a query is a Boolean filter that
is applied to either a collection or an

extent. The result is a collection containing instances for
which the filter expression evaluated as true. Parameters
can provide values to be used in query expressions for
constraining the result. They are declared using the same
syntax Java uses for declaring method parameters.
Variables are used to iterate collections and extents. They
are declared using Java's syntax for local variables. Types
used in the query are imported with the same import
syntax found in Java.

JJDDOO SSuuppppoorrttss
ccoonnccuurrrreenntt
ttrraannssaaccttiioonnss

JJDDOO wwoorrkkss
wwiitthh JJCCAA
aanndd EEJJBB

UUppddaattiinngg
ssttoorreedd oobbjjeeccttss iiss
ttrraannssppaarreenntt

JJDDOOQQLL iiss
iinnddeeppeennddeenntt
ooff uunnddeerrllyyiinngg
iimmpplleemmeennttaattiioonnss

AAcccceessssiinngg
ssttoorreedd oobbjjeeccttss
iiss ttrraannssppaarreenntt

JJDD00QQLL uusseess
JJaavvaa ssyynnttaaxx

Page 7

Filters in JDOQL contain many of the operators found
in Java, including the equality, comparison, logical and
arithmetic operators. JDOQL goes beyond Java by
promoting numeric operands of primitive and wrapper
classes for the comparison and arithmetic operators.
Though the initial input for the query is a collection or
extent of objects of a single type, you can still navigate in
the filter to related objects. References are traversed in a
query by using the same dot operator used in Java. You
can iterate over the elements of a collection by associating
a variable with a collection via the contains method.

JDOQL provides a filtering mechanism that understands
and can navigate the Java object model. Its syntax and
operators are based on Java. Most importantly, it provides
Java developers with a familiar and consistent language
environment that will be portable and work across all
implementations.

Summary: What a JDO
Application Looks Like

JDO lets application developers take full
advantage of the object paradigm. In fact,
JDO has a minimal intrusion on how Java

software normally accesses related objects in memory.
Most of the application does not need to perform any
explicit database operations. A typical application first
begins a transaction and then performs a query to get
some specific "starting point" objects of interest. The
remainder of the application flow simply involves
navigating the object model, accessing and updating
instances as necessary, without any explicit calls to the
database. At some point the application commits the

transaction and the JDO implementation propagates all
the updates made by the application to the database.

The application does not need to
provide any mapping between data
models. It also does not need to track
what has changed and remap those
changes back into the data model of the
underlying database. The application

just traverses its object model in memory and the JDO
runtime takes care of providing the instances from the
database on demand. JDO provides significant
development productivity advantages over other
approaches. Using JDO will dramatically reduce the
costs of developing an application.

Conclusion
Until recently, serialization and JDBC were the only two
persistence APIs considered standard by the Java
community. Serialization can directly persist an
application's object model but it lacks the database
features that are essential for building reliable and scalable
applications. JDBC provides reliability and scalability by
interfacing with SQL-based datastores but its use of the
relational model makes it difficult to integrate with an
application's object model. JDO combines the best
features of the previous persistence APIs, without their
associated deficiencies. By combining the Java object
model support and portability of Serialization with the
reliability and scalability of JDBC, JDO will compel
application developers to "write once, persist
everywhere!"

Figure 3: Alternative persistent API choices shown from
a layered architecture perspective.

Conclusion continued on page 8...
JJDDOO’’ss
ttrraannssppaarreennccyy
mmeeaannss ffeeww
eexxpplliicciitt
ddaattaabbaassee ccaallllss
aarree nneeeeddeedd

MMiinniimmaall
iinnttrruussiioonn

JDO

File System

Application

Java objects
serve as basis
of interface

Cells of
a table
serve as
basis of
interface

Java objects serve as
basis of interface

Serialization Relational DBMS Object DBMS

JDBC

Page 8

Table 1: Summary of High-Level Differences Among Persistence APIs

Feature Serialization JDBC JDO

URLs to visit
JDO community website: http://www.jdocentral.com
JDO within the Java Community Process: http://www.jcp.org/jsr/detail/12.jsp.
JDO web site maintained by JDO Specification Lead: http://access1.sun.com/jdo.

About the author:
David Jordan founded Object Identity, Inc. to provide JDO consulting, training and custom software development
services. He has been an active member of the JDO expert group since its inception. He has been a software developer
and architect involved in object persistence technology since 1985 when he initiated the development of the first C++
object database. He has had columns in C++ Report and Java Report covering object persistence technologies. He has
served as C++ and Java editor for the Object Data Management Group. David is also author of the book titled "C++
Object Databases". He was also a reviewer of JDBC prior to its release and was acknowledged in Sun's JDBC 1.0
specification book published in their Addison-Wesley Java series.

Poet Software Corporation 999 Baker Way, Suite 200; San Mateo, CA 94404 Ph: 800-950-8845 Fx: 650-286-4630 www.fastobjects.com

©Poet Software GmbH 2001. Poet®, Poet Software and FastObjects are trademarks or registered trademarks of Poet Holdings, Inc. All rights reserved.

JavaTM and all JavaTM-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or other countries.
Poet is independent of Sun Microsystems, Inc. Other product names may be trademarks of the companies with which the product names are associated.

JDO-WHITE-12MARCH2002

Data model Java Relational table model Java

Support of Java classes Yes No Yes
Access granularity Object graph Table cell Object

Yes No Yes

Yes No Yes

Unique identity No Primary key Primary key or
Datastore identifier

No No Yes

None
SQL, each vendor has a
different dialect
(non-portable)

JDOQL, standard language
neutral of underlying
language of database
vendor (portable)

No Planned for JDBC 3.0 Yes

Transactions No Yes Yes

No No Yes

Concurrency No Yes Yes

Support of inheritance
and polymorphism

Support of references
and collections

Automatic management
of cache

Query Language

Java Connector API
compatibility for
application server
integration

Object model
supported in queries

